Saturday, July 21, 2007

What is Cancer ..

Cancer is a disease characterized by a population of cells that grow and divide without respect to normal limits, invade and destroy adjacent tissues, and may spread to distant anatomic sites through a process called metastasis. These malignant properties of cancers differentiate them from benign tumors, which are self-limited in their growth and do not invade or metastasize (although some benign tumor types are capable of becoming malignant). Cancer may affect people at all ages, but risk for the more common varieties tends to increase with age.[1] Cancer causes about 13% of all deaths.[2]

No Cure For Cancer - Its a Funny Video (Cancer in Society) =)

Nearly all cancers are caused by abnormalities in the genetic material of the transformed cells. These abnormalities may be due to the effects of carcinogens, such as tobacco smoke, radiation, chemicals, or infectious agents. Other cancer-promoting genetic abnormalities may be randomly acquired through errors in DNA replication, or are inherited, and thus present in all cells from birth. Complex interactions between carcinogens and the host genome may explain why only some develop cancer after exposure to a known carcinogen. New aspects of the genetics of cancer pathogenesis, such as DNA methylation, and microRNAs are increasingly being recognized as important.

Genetic abnormalities found in cancer typically affect two general classes of genes. Cancer-promoting oncogenes are often activated in cancer cells, giving those cells new properties, such as hyperactive growth and division, protection against programmed cell death, loss of respect for normal tissue boundaries, and the ability to become established in diverse tissue environments. Tumor suppressor genes are often inactivated in cancer cells, resulting in the loss of normal functions in those cells, such as accurate DNA replication, control over the cell cycle, orientation and adhesion within tissues, and interaction with protective cells of the immune system.

Cancer is usually classified according to the tissue from which the cancerous cells originate, as well as the normal cell type they most resemble. These are location and histology, respectively. A definitive diagnosis usually requires the histolo

gic examination of a tissue biopsy specimen by a pathologist, although the initial indication of malignancy can be symptoms or radiographic imaging abnormalities. Most cancers can be treated and some cured, depending on the specific type, location, and stage. Once diagnosed, cancer is usually treated with a combination of surgery, chemotherapy and radiotherapy. As research develops, treatments are becoming more specific for different varieties of cancer. There has been significant progress in the develo

pment of targeted therapy drugs that act specifically on detectable molecular abnormalities in certain tumors, and which minimize damage to normal cells. The prognosis of cancer patients is most influenced by the type of cancer, as well as the stage, or extent of the disease. In addition, histologic grading and the presence of specific molecular markers can also be useful in establishing prognosis, as well as in determining

individual treatments.



Classification

Nomenclature

The following closely related terms may be used to designate abnormal growths:

  • Neoplasm: a scientific term which refers to an abnormal proliferation of genetically altered cells.
  • Malignant neoplasm: synonymous with cancer.
  • Tumor: broadly defined, can be any swellin g or mass. However, the vast majority of entities referred to as 'tumors' in common usage are in fact neoplasms. Specifically, a tumor is a solid neoplasm; some neoplasms, such as cancers of the blood, are not solid.
  • Benign tumor: a tumor (solid neoplasm) that has self-limiting growth and does not invade other tissues nor metastasize. Usually not cancerous.
  • Pre-malignancy: A non-invasive neoplasm that may not form an obvious mass, but has the potential to progress to cancer if left untreated. Pre-malignant neoplasms may show distinctive microscopic changes such as dysplasia or atypia.

Cancers are classified by the type of cell that resembles the tumor and, therefore, the tissue presumed to be the origin of the tumor. Examples

of general categories include:

  • Carcinoma: Malignant tumors derived from epithelial cells. This group represents the most common cancers, including the common forms of breast, prostate, lung and colon cancer.
  • Sarcoma: Malignant tumors derived from connective tissue, or mesenchymal cells.
  • Lymphoma and leukemia: Malignancies derived from hematopoetic (blood-forming) cells
  • Germ cell tumor: Tumors derived from totipotent cells. In adults most often found in the testicle and ovary; in fetuses, babies, and young children most often found on the body midline, particularly at the tip of the tailbon e; in horses most often found at the poll (base of the skull).
  • Blastic tumor: A tumor (usually malignant) which resembles an immature or embryonic tissue. Many of these tumors are most common in children.

Malignant tumors are usually named using the La

tin or Greek root of the organ of origin as a prefix and the above category name as the suffix. For instance, a malignant tumor of the liver is called hepatocarcinoma; a malignant tumor of the fat cells is called liposarcoma. For common cancers, the English organ name is used. For instance, the most common type of breast cancer is called ductal carcinoma of the breast or mammary ductal carcinoma. Here, the adjective ductal refers to the appearance of the cancer under the microscope, resembling normal breast

ducts.

Benign tumors are named using -oma as a suffix with the organ name as the root. For instance, a benign tumor of the smooth muscle of the uterus is called leiomyoma (the common name of this frequent tumor is fibroid). However, some cancers also use this prefix for historical reasons, examples being melanoma and seminoma.


Adult cancers

In the U.S. and other developed countries, cancer is presently responsible for about 25% of all deaths.[3] On a yearly basis, 0.5% of the pop

ulation is diagnosed with cancer. The statistics below are for adults in the United States, and will vary substantially in other countries:

Male
Female
most common cause of death[3] most common cause of death[3]
prostate cancer (33%) lung cancer (31%) breast cancer (32%) lung cancer (27%)
lung cancer (13%) prostate cancer (10%) lung cancer (12%) breast cancer (15%)
colorectal cancer (10%) colorectal cancer (10%) colorectal cancer (11%) colorectal cancer (10%)
bladder cancer (7%) pancreatic cancer (5%) endometrial cancer (6%) ovarian cancer (6%)
cutaneous melanoma (5%) leukemia (4%) non-Hodgkin lymphoma (4%) pancreatic cancer (6%)

Childhood cancers

Cancer can also occur in young children and adolescents, but it is rare. Some studies have concluded that pediatric cancers, especially leukemia, are on an upward trend.[4][5]

The age of peak incidence of cancer in children occurs during the first year of life. Leukemia (usually ALL) is the most common infant malignancy (30%), followed by the central nervous system cancers and neuroblastoma. The remainder cons

ists of Wilms' tumor, lymphomas, rhabdomyosarcoma (arising from muscle), retinoblastoma, osteosarcoma and Ewing's sarcoma.[3] Teratoma is the most common tumor in this age group, but most teratomas are surgically removed while they are still benign.

Female and male infants have essentially the same overall cancer incidence rates, but white infants have substantially higher cancer rates than black infants for most cancer types. Relative survival for infants is very good for neuroblastoma, Wilms' tumor and retinoblastoma, and fairly good (80%) for leukemia, but not for most other types of cancer.

---------------------

Check this out : Operation run by robot

Two forms of high technology will join together this January to allow the public and physicians to view a less invasive surgery for prostate cancer from the comfort of their home or office. Thomas Jefferson University Hospital will host a live webcast of a radical laparoscopic prostatectomy, on Thursday, January 19, 2006, at 4:30 p.m., using futuristic, state-of-the art robotic technology.

Webcast viewers will see how laparoscopic surgery offers potential advantages to patients, including less trauma through smaller incisions, faster recovery and less overall blood loss during surgery,? said Leonard Gomella, M.D., FACS, chair of Urology and Bernard Godwin, Jr. Professor of Prostate Cancer